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Abstract—To advance naval capabilities in identifying bur-
ied mines and unexploded ordnance, hybrid systems that fuse 
data from disparate sensors are being developed.  This paper 
describes preliminary results of a classification engine that 
combines target features and classification parameters from a 
synthetic aperture Buried Object Scanning Sonar (BOSS) and 
an electromagnetic Real-time Tracking Gradiometer (RTG). 
The target characteristics that generate signals of interest for 
these sensors (acoustic backscatter and induced changes in 
local magnetic field) are sufficiently diverse that optimal com-
bination should effectively increase the probability of correct 
target classification and reduce false alarm rates. Geometric 
and backscatter intensity features automatically extracted 
from three-dimensional acoustic imagery are combined with 
magnetic moment and associated parameters in a joint-
Gaussian Bayesian classifier (JBC), which makes mine-
like/non-mine-like decisions for each contact.  The fused acous-
tic-magnetic classifier was evaluated using a combination of 
sea-trial and synthetic data sets. Nine data runs were processed 
to yield acoustic and magnetic features, supplemented by the 
synthetic data.  An initially large variety of feature types were 
down-selected by a training process to a critical subset. With 
this limited dataset, initial results show probabilities of false 
classification (Pfc) from 1.6% to 6.3% when at high probabil-
ity of correct classification (Pcc). 

I. INTRODUCTION 

To advance capabilities in identifying buried mines and 
unexploded ordnance, hybrid systems that fuse data from 
disparate sensors are being developed.  The Office of Naval 
Research is developing a state-of-the-art sensor suite for a 
Buried Mine Confirmation Unmanned Underwater Vehicle 
(UUV) that currently incorporates a synthetic aperture Bur-
ied Object Scanning Sonar (BOSS—developed by Florida 
Atlantic University) and an electromagnetic Real-time 
Tracking Gradiometer (RTG—developed by GE Infrastruc-
ture, Security) [1,2].  The prototype sensors are presently 
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being deployed and tested on a Bluefin Robotics 12.75-inch 
UUV as pictured in Fig. 1. 

At the low acoustic frequencies necessary for penetrating 
the top layer of sediment (roughly less than 30 kHz), nar-
rowband sonars exhibit limited detection performance due 
to coarse spatial resolution and reverberation.  The BOSS 
system overcomes these challenges by employing low-
frequency acoustics for sediment penetration, and a com-
plement of broadband transmissions and extensive two-
dimensional receive apertures for generating decimetric 
three-dimensional imagery. However, performance of this 
sonar, and indeed any seafloor-imaging sonar operating in 
this environment, is limited by surface and bottom rever-
beration, the opacity of coarse bottom substrates, and the 
large number of clutter objects detected. 

Addition of a magnetic sensor, as in the BOSS-RTG suite, 
provides overlapping capabilities of target detection and 
localization as well as indirect information on the composi-
tion of objects.  While the acoustic sensor is typically better 
at localization and shape estimation, RTG localization and 
magnetic moment estimates of ferromagnetic targets are 
unaffected by seabed type. At the short ranges (several me-
ters) for which this device is designed to operate, the RTG 

 
Figure 1. BOSS-RTG installed on Bluefin 12.75-inch UUV. 
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can detect buried ferrous mines as equally well as proud, 
and generally exhibits lower clutter density than its sonar 
counterpart.  If the abilities of these sensors are effectively 
characterized and an optimal strategy for fusing system out-
puts is implemented, the overall system could demonstrate 
unprecedented classification abilities with minimum false 
alarm rates.  Such a strategy would exploit the independent 
nature of acoustic vs. non-acoustic sensors to drive down 
the false target rate. 

This paper presents preliminary results of combining fea-
ture and classification parameters derived from outputs of 
the experimental confirmation UUV’s BOSS and RTG sen-
sors.  In this approach, illustrated in Fig. 2, geometric and 
backscatter intensity features automatically extracted from 
three-dimensional acoustic imagery are combined with 
magnetic moment and associated parameters in a joint-
Gaussian Bayesian classifier (JBC) [3], which makes mine-
like/non-mine-like decisions for each contact. 

Sections II and III of this paper describe the BOSS and 
RTG sensors and their respective detectors; Section IV pre-
sents the joint-Gaussian Bayesian classifier; Section V de-
scribes field and synthetic data used for this work; Sections 
VI and VII summarize target classification results and plans 
for follow-on efforts. 

II. SYNTHETIC APERTURE BURIED OBJECT 
SCANNING SONAR 

The BOSS is a broadband frequency-modulated sonar 
that generates multi-aspect imagery of buried, partially bur-
ied and proud targets using an omni-directional projector 
that transmits pulses in the band of 3 to 20 kHz, and hydro-
phone arrays embedded into towed-body wings that meas-
ure energy backscattering from the seafloor and sediment 
volume (Fig. 1).  Three-dimensional SAS imagery is gener-
ated using a navigation solution based on measurements 
from a Doppler Velocity Log (DVL) and an Inertial Meas-
urement Unit (IMU) to time-delay and coherently sum 

matched-filtered phase histories from subsurface focal 
points over a large number of pings [4]. 

The focused data consist of a large set of three-
dimensional SAS data cubes created by a sliding window of 
ping intervals, where adjacent data cubes have greater than 
90% overlap.  By using navigation/registration information, 
these data cubes are fused into a single large three-
dimensional dataset, in which each voxel’s intensity is equal 
to the maximum intensity of the co-registered voxels across 
all original data cubes.  For improved image contrast, the 
intensity of the specular seafloor return (a shallow swath of 
voxels beneath the platform) is spatially nullified with an 
automated process employing measured backscatter statis-
tics. Fig. 3 shows mosaics of top-view maximum intensity 
projections for three data runs collected over a buried target 
field in St. Andrew Bay FL, May 2004.  Objects of interest 
are labeled; the rows of unmarked objects are cement blocks 
used for visual co-registration between runs. 

Acoustic Detector 
The BOSS three-dimensional object detector and feature 

extractor operates in two stages (top chain of Fig. 2).  The 
first stage, highlight segmentation, is based on a mean-
standard deviation statistical analysis by Maussong, Cha-
nussot, and Hétet [5] and a proximity clustering algorithm 
[3].  A feature extraction stage derives geometric and inten-
sity features from every contact. 

Highlight Segmentation and Clustering 
The three-dimensional image is first normalized to keep 

the mean intensity approximately uniform across the vol-
ume. For highlights, a local mean and standard deviation is 
computed for each voxel.  A threshold in mean and standard 
deviation is chosen based on the linear relation between the 
mean and standard deviation as defined by the best statisti-
cal fit to the clutter background voxels.  Target voxels typi-
cally deviate from this fit. Voxels with a higher local mean 
or local standard deviation pass the threshold. 

 

 

Figure 2. JBC acoustic and magnetics sensor fusion engine. 
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Figure 3. Acoustic data collected in May 2004 in St. Andrew Bay; run 2, top; run 4, middle; run 8, bottom. 

The natural threshold between target and clutter is found 
at the “knee” of an entropy function—a measure of the 
number and compactness of voxels above a given trial 
threshold.  The knee is defined as the point on the curve 
which maximizes the second derivative of the entropy.  The 
actual threshold used for segmentation may be modified 
from the knee threshold in order to adjust the detector’s 
false alarm rate. 

Voxels identified as highlights are grouped based on 
proximity, and all voxels within an adjustable distance are 
associated as a single cluster.  Typically, the clustering dis-
tance is a small multiple of a voxel’s dimensions. Each clus-
ter is passed to the feature extractor as a contact. 

Feature Extraction 
For each contact from the segmented image, the best-fit 

ellipsoid is computed via an eigenanalysis of the covariance 
matrix of voxel locations.  This gives an estimate of the 
contact’s size and orientation. Geometric features include 
length, width, length-to-width ratio, cross-sectional area, 
and object volume.  Intensities are normalized by the seg-
mentation threshold to allow direct image-to-image com-
parisons.  Intensity features include peak, total, and mean 
and standard deviation over the object volume. 

Fig. 4 shows a rendering of the detector output near the 
central cylinder of Fig. 3.  The cylinder is the large, central 
object; two of the field-marking cement blocks are located 
to either side.  The blue lines designate the extracted major 
and minor axes for these objects. 

III. REAL-TIME TRACKING GRADIOMETER 

The RTG assembly comprises four three-axis fluxgate 
magnetometers that measure magnetic field anomalies 
caused by the presence of a target in the Earth’s magnetic 
field [6]. Vector-field measurements from three of the sen-
sors, which are oriented to form an equilateral triangle, are 
combined to form the five independent components of the 
gradient tensor.  The fourth magnetometer is a reference 
sensor used to remove effects of platform motion. The mag-
netic gradient time series, logged while the UUV platform is 
in motion, is used to detect and locate magnetically perme-
able objects. 

Magnetic Detector 
At ranges greater than an object’s physical size, the mag-

netic expression of an object will generally be that of a point 
dipole.  With algorithms and software developed at the Na-
val Surface Warfare Center Panama City (NSWC-PC) [7], 
the RTG provides estimates of magnetic dipole locations, 
directions, and magnitudes for ferromagnetic targets.  The 
set of dipole-moment properties can then be used as classi-
fier features. 

In general, sonar-derived target locations will be more ac-
curate than those estimated by the RTG.  To increase dipole 
estimation accuracy and consistency between runs, we ap-
plied a modified version of the detector which uses a priori 
input locations registered by the BOSS.  Using modeled test 
 



  

Figure 4. Detector output near the cylinder in runs 2 (left) and 4 (right) from Fig. 3.  Scale is in meters. 

fields to quantify this effect, we found moment estimate 
errors were reduced by as much as a factor of ten, depend-
ing on the proximity of multiple targets. 

Magnetic field based classifiers typically use only mo-
ment magnitude.  In the JBC application described here, 
additional calculated parameters (including several de-
scribed by Lathrop, Shih and Wynn [8]) are employed, such 
as proxies for volume, aspect ratio, and orientation, and 
effective susceptibilities. 

IV. JOINT-GAUSSIAN BAYESIAN CLASSIFIER 

We implemented a joint-Gaussian Bayesian classifier 
(JBC) [3] that measures feature distributions of candidate 
object clusters, transforms from the original feature distribu-
tions into Gaussian distributions, computes feature covari-
ance to exploit feature correlation, and classifies the candi-
date cluster as either mine-like or not, using a log-likelihood 
(LLR) test: 

 LLR = (xtest–xclut)T R clut
–1 (xtest–xclut) –  

 LLR = (xtest–xtarg)T Rtarg
–1 (xtest–xtarg) + (1) 

 LLR = log( |R clut| / |Rtarg| ) 

Here xtest is the transformed, measured feature vector for the 
candidate object, xtarg and xclut are the mean feature vectors 
of the target and clutter training sets, and Rtarg and Rclut are 
the corresponding covariance matrices of the training sets. 
The feature set xtest of the test object is used to calculate the 
corresponding LLR for the candidate object.  The LLR is 
based on a joint least-squares covariance-weighted estimate 
of the difference in test detection from target and clutter 
mean training vectors. The value of the LLR is compared to 
a threshold to determine the test detection’s membership in 
the target or clutter population. 

To select a small but robust set of classification features 
from over 40 that are available, forward and backward 
stepwise optimal selection processes are used similar to 
those described in Dobeck and Cobb [9].  This stepwise 
process is not globally optimal, but is fast and works suffi-

ciently well. In our case, the feature subset is optimized by 
maximizing the integral of the ROC curve, a metric that 
gives weight to both Pcc and Pfc. 

Note that when a particular feature is missing, due to sen-
sor or detector limitations (e.g., a contact with sub-threshold 
acoustic scatter and large magnetic moment), the feature is 
replaced by the appropriate mean value. In Eq. 1, the miss-
ing feature is replaced by the clutter mean value in the first 
term and the target mean value in the second term. In each 
term the substituted value becomes zero after taking the 
difference from the mean, and the contribution to the LLR is 
zero. This procedure prevents missing features from biasing 
the classifier. 

V. DATA 

The data were acquired at test fields located in 
St. Andrew Bay, Panama City and during the SAX04 ex-
periment.  The fields consisted of a variety of man-made 
target and clutter objects, ranging in size from a fraction of 
a meter to several meters.  Both ferromagnetic and non-
metallic objects were present.  The BOSS data were beam-
formed using a sliding synthetic aperture window composed 
of 30 pings.  The resulting three-dimensional image has 
resolution voxels 10 cm by 10 cm by 5 cm in the along-
track, cross-track and depth directions, respectively. The 
overlapping SAS windows were mosaicked using a maxi-
mum-intensity projection onto a final three-dimensional 
grid (Fig. 3). 

To setup the training and test data sets, the images were 
compared to ground truth, and each contact (defined as a 
bright, compact group of voxels) was identified as target, 
known clutter, or unknown clutter.  Long, metallic contacts 
were labeled targets, while objects such as spheres and ce-
ment blocks were labeled as clutter.  The large majority of 
acoustic contacts were unidentifiable and used as clutter of 
opportunity.  Overall, twelve target and 140 clutter contacts 
were found in the nine acoustic platform runs used. 



In one experiment, we supplement the sea-trial data with 
synthetic data which serves to increase the number of con-
tacts, especially targets.  The synthetic target returns were 
generated using a T-matrix code [10] which models the low-
frequency scattering response of an elastic object.  The scat-
ter is computed in the frequency domain, transformed into 
the time domain, and then beamformed using a synthetic 
aperture algorithm.  Features were extracted from the result-
ing three-dimensional image for use by the classifier. 

The magnetic field data used in the classifier include 
eleven RTG tracks collected in 2006 in St. Andrew Bay.  
Although additional magnetic-field data were acquired ear-
lier, technical difficulties prevented their use.  To improve 
the limited dataset, magnetic and acoustic contacts were 
matched to create the fused dataset. 

In order to increase the number of objects used to train 
and test the JBC, we supplemented field data with simulated 
RTG data using AST’s in-house magnetic modeling tool 
EMAGINE.  Given a set of input dipole moments, or pa-
rameters to approximate a moment by assuming the object 
is a prolate ellipsoid shell, EMAGINE uses Green’s func-
tion formulations to generate three-component magnetic 
field and five-component gradiometer data.  Noise simula-
tions include effects from water currents, geologic variabil-
ity, solar activity, and generic white noise.  Simulations 
were generated for the synthetic objects used in the acoustic 
simulations, as well as for BOSS data collected during the 
SAX04 and 2005 St. Andrew Bay experiments, for which 
there were no usable magnetic field data. 

VI. CLASSIFICATION RESULTS 

The features extracted from the acoustic and magnetic 
data were combined into a single feature set, which was 
subsequently divided into training and testing subsets for 
evaluating the JBC classifier.  The JBC was trained and 
evaluated multiple times in order to test for alternative fea-
ture-set solutions: note that the mean receiver operating 
characteristic (ROC) curves are presented in this discussion. 

Results of the JBC utilizing the sea-trial data of Sec. V 
are shown by the ROC curves in Fig. 5.  With acoustic fea-
tures only, the classifier demonstrated a 6.3% Pfc while at 
high Pcc.  By also using magnetic features, the Pfc drops to 
1.7%.  This large improvement is due to the fact that the 
classifier cannot classify magnetic-only contacts using 
solely acoustic features.  Likewise, acoustic-only contacts 
cannot be classified using magnetic features.  (The mag-
netic-only ROC curve is not shown because of the insuffi-
cient number of magnetic-only contacts.) 

Results of the JBC utilizing both sea-trial and syntheti-
cally-generated data are shown by the ROC curves in Fig. 6. 
The classifier shows similar performance with inclusion of 
synthetic data.  The fused classifier using both acoustic and 
magnetic features slightly outperforms the case where only 
acoustic features are employed. 

The system with synthetic data appears to have a higher 
false classification rate.  This observation may be due to 
limitations of the models to simulate features. Alternatively, 
the increased number of exemplars may reflect a more real-
istic, more modest, estimate of performance. 
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Figure 5. JBC ROC curves for sea-trial data using acoustic 
features only (dashed blue curve) and both acoustic and 

magnetic features (solid green curve). The Pfc at high Pcc is 
6.3% and 1.7%, respectively. 
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Figure 6. JBC ROC curves for combined sea-trial and syn-
thetic data using acoustic features only (dashed blue curve) 
and both acoustic and magnetic features (solid green curve). 

The Pfc at high Pcc is 4.2% and 3.8%, respectively. 

VII. DISCUSSION AND SUMMARY 

This paper presents preliminary results of a classification 
engine that combines target features and classification pa-
rameters from a synthetic aperture Buried Object Scanning 
Sonar (BOSS) and an electromagnetic Real-time Tracking 
Gradiometer (RTG). Geometric and backscatter intensity 
features automatically extracted from three-dimensional 
acoustic imagery were combined with magnetic dipole mo-



ment and associated parameters in a joint-Gaussian Bayes-
ian classifier (JBC), which makes mine-like/non-mine-like 
decisions for each contact. Nine acoustic and eleven mag-
netic field data runs were processed to yield acoustic and 
magnetic features, supplemented by synthetic data.  An ini-
tially large variety of feature types was down-selected by a 
training process to a critical subset.  With this limited data-
set, initial results show probabilities of false classification 
(Pfc) from 1.6% to 6.3% when at high probability of correct 
classification (Pcc). These early results are encouraging and 
further work is proceeding with dual-sensor synoptic data 
sets being collected throughout the summer of 2006. 

This implementation of the classifier demonstrates sensor 
fusion at the feature level, where measured characteristics 
from two sensors are combined into a single feature vector. 
The utility of fusion at the data level was demonstrated by 
using BOSS derived locations to constrain RTG solutions. 
Future work will investigate fusing sensors at the decision-
output level and incorporating specific target information 
into the classifier engine. 
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